Shear layer dynamics of a cylindrical cavity for different acoustic resonance modes
نویسندگان
چکیده
This paper investigates the interaction between the shear layer over a circular cavity and the flowexcited acoustic response of the volume to shear layer instability modes. Within the fluid-resonant category of cavity oscillation, most research has been carried out on rectangular geometries and where cylinders are considered, side branch and Helmholtz oscillators are most common. In these studies, focus is generally restricted to either longitudinal standing waves or to Helmholtz resonance. In practical situations however, where the cavity is subject to a range of flow speeds, many different resonant mode types may be excited. The current work presents a cylindrical cavity design where Helmholtz oscillation, longitudinal resonance and also azimuthal acoustic modes may all be excited upon varying the flow speed. Experiments performed show how lock-on between each of the three fluid-resonances and shear-layer instability modes can been generated. A circumferential array of microphones flush mounted with the internal surface of the cavity wall was used to decompose the acoustic pressure field into acoustic modes and has verified the excitation of higher order azimuthal modes by the shear layer. One of these interior pressure signals was also used to provide a phase signal for averaging flow field measurements of the shear layer acquired using PIV. Observation of the PIV images provides insight into these acoustically coupled oscillations.
منابع مشابه
Wave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells
Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...
متن کاملFlow Excited Acoustic Resonance in a Deep Cavity: an Analytical Model
Flow past the opening of a deep cavity can excite and sustain longitudinal acoustic modes resulting in large pressure fluctuations and loud tone generation. An analytic model of the interaction of the free stream with the acoustic flow field using concentrated vortices in the shear layer is proposed. The model includes a computation of the power transferred by the traveling vortices to the acou...
متن کاملشبیهسازی عددی پوشش های ضد اکو حفره دار با استفاده از ترکیب روشهای اجزاء محدود و کانال آکوستیکی
The absorption performance of anechoic coatings depends on the material properties, layer thicknesses and cavity distribution density and cavity size. In this paper a design method based on numerical simulation was presented by combining FEM and acoustic duct method (ADM). Analyzing of anechoic coatings was performed under active sonar impinging plane wave by normal incident angle. In thi...
متن کاملFlow around a NACA0018 airfoil with a cavity and its dynamical response to acoustic forcing
Trapping of vortices in a cavity has been explored in recent years as a drag reduction measure for thick airfoils. If, however, trapping fails, then oscillation of the cavity flow may couple with elastic vibration modes of the airfoil. To examine this scenario, the effect of small amplitude vertical motion on the oscillation of the shear layer above the cavity is studied by acoustic forcing sim...
متن کاملBehavior of Torsional Alfven Waves and Field Line Resonance on Rotating Magnetars
Torsional Alfven waves are likely excited with bursts in rotating magnetars. These waves are probably propagated through corotating atmospheres toward a vacuum exterior. We have studied the physical effects of the azimuthal wave number and the characteristic height of the plasma medium on wave transmission. In this work, explicit calculations were carried out based on the three-layered cylindri...
متن کامل